首页> 外文OA文献 >Error Correction for Index Coding With Coded Side Information
【2h】

Error Correction for Index Coding With Coded Side Information

机译:具有编码辅助信息的索引编码的纠错

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Index coding is a source coding problem in which a broadcaster seeks to meet the different demands of several users, each of whom is assumed to have some prior information on the data held by the sender. A well-known application is satellite communications, as described in one of the earliest papers on the subject (Birk and Kol, 1998). It is readily seen that if the sender has knowledge of its clients’ requests and their side-information sets, then the number of packet transmissions required to satisfy all users’ demands can be greatly reduced if the data are encoded before sending. The collection of side-information indices as well as the indices of the requested data is described as an instance I of the index coding with side-information (ICSI) problem. The encoding function is called the index code of I , and the number of transmissions, resulting from the encoding is referred to as its length. The main ICSI problem is to determine the optimal length of an index code and instance I . As this number is hard to compute, bounds approximating it are sought, as are algorithms to compute efficient index codes. These questions have been addressed by several authors (e.g., see Alon et al. 2008, Bar-Yossef et al. 2011, Blasiak et al. 2013), often taking a graph-theoretic approach. Two interesting generalizations of the problem that have appeared in the literature are the subject of this paper. The first of these is the case of index coding with coded side information (Dai et al. 2014), in which linear combinations of the source data are both requested by and held as users’ side-information. This generalization has applications, for example, to relay channels and necessitates algebraic rather than combinatorial methods. The second is the introduction of error-correction in the problem, in which the broadcast channel is subject to noise (Dau et al. 2013). In this paper, we characterize the optimal length of a scalar or vector linear index code with coded side information (ICCSI) over a finite field in terms of a generalized min-rank and give bounds on this number based on constructions of random codes for an arbitrary instance. We furthermore consider the length of an optimal δ -error correcting code for an instance of the ICCSI problem and obtain bounds analogous to those described in (Dau et al. 2013), both for the Hamming metric and for rank-metric errors. We describe decoding algorithms for both categories of errors.
机译:索引编码是一种源编码问题,其中广播公司试图满足几个用户的不同需求,假定每个用户都具有关于发送方所持有数据的一些先验信息。如有关该主题的最早论文之一所述,卫星通信是一种众所周知的应用(Birk和Kol,1998年)。很容易看出,如果发送方了解其客户的请求及其边信息集,那么如果在发送之前对数据进行编码,则可以大大减少满足所有用户需求所需的数据包传输次数。附带信息索引以及所请求数据的索引的集合被描述为带有附带信息的索引编码(ICSI)问题的实例I。编码函数称为I的索引代码,编码产生的传输次数称为长度。 ICSI的主要问题是确定索引代码和实例I的最佳长度。由于此数字难以计算,因此寻求近似于其的界限以及计算有效索引代码的算法。这些问题已经被多位作者解决(例如,参见Alon等人2008,Bar-Yossef等人2011,Blaasiak等人2013),他们经常采用图论方法。文献中出现了两个有趣的关于该问题的概括。第一种情况是使用编码后的辅助信息进行索引编码的情况(Dai等,2014),其中源数据的线性组合既是用户的辅助信息,也是用户的辅助信息。这种概括具有例如中继通道的应用,并且需要代数而不是组合方法。第二个问题是引入了纠错功能,其中广播信道易受噪声影响(Dau等人,2013)。在本文中,我们根据广义最小秩来刻画带有有限域上已编码边信息(ICCSI)的标量或矢量线性索引码的最佳长度,并基于随机码的构造给出该数的界限任意实例。我们还考虑了针对ICCSI问题实例的最佳δ纠错码的长度,并获得了类似于(Dau et al.2013)中所述的汉明度量和秩度量误差的界限。我们描述了两种错误类型的解码算法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号